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Abstract-A mathematical study of radial m.ttrix and interface cracking in the transverse direction
of fihcr-reinforced composites is presented. Two basic situations are considered: a radial crack in
front of a circular fiber in an infinite matrix and an arc-shaped crack at the fihcr/matrix interface.
The first case is Ireat~-d numerically using Erdog'ln·s integral equation technique. whereas the second
case allows for an analytical solution I>n the basis of Ihe complex function method as developed by
Muskhelishvili Kolosov. In both cases the stress intensity factors arc c.tlculated for the full range
of Dundurs' parameters.

l. INTRODUCTION

It is known that the strength of metals and the toughness of ceramics as well as other
mechanical properties ofductile or brittle materials can greatly be improved by the addition
of fibrous reinforcements. However, the transverse properties of such tiber-reinforced com
posites (FRCs) arc often still an order of magnitude below the axial ones.

Thermal mismatch between the tiber and the surrounding matrix can lead to further
degradation of the mechanical properties of the composite. During cooling from elevated
processing temperatures down to room temperatures high thermal stresses develop in the
vicinity of the fiber/matrix interface. If the stresses are tensile they will lead to matrix
cracking or interface separation; if they arc compressive they exert a stabilizing pressure
on the fiber/matrix interface or in the matrix, unless they are counterbalanced and annihil
ated by an external tension.

This paper presents a mathematical study of radial matrix and interface cracking in
transverse direction under the influence of thermal and mechanical loads. The following
two basic situations are considered: a radial matrix crack (r-crack) in front of a single,
circular fiber in an infinite matrix, and an arc-shaped crack (.9-crack) at the fiber/matrix
interface. In both cases the thermal expansion and the elastic coefficients of the fiber and
the matrix are assumed to be different and the matrix is loaded at infinity transversely to
the fiber. The r-crack is simulated by a continuous distribution of dislocations which can be
determined from a numerical solution of singular integral equations using an approach
suggested by Erdogan et al. (1973. 1974, 1975). This distribution allows us to calculate the
stress intensity factors at both crack tips. The .9-crack is analyzed using the complex function
technique developed by Muskhelishvili-Kolosov (1953).

As has been shown by Muller et al. (in preparation (a», the interaction between
neighboring fibers and its influence on the stress distribution of the system can be neglected
for fiber volume fractions up to 40%. Thus a single fiber model should describe rand 9
cracking reliably in FRCs with low or medium fiber volume content. Finally it should be
mentioned that plasticity has not been taken into account: matrix as well as interface
cracking is assumed to occur within the elastic deformation regime.

1907



1905 w. H ~tLLLER and S. SCH\IACDER

, C-\LCLLATlO;-"; OF STRESS INTE;-";SITY FACTORS OF ,-CRACKS

2.1. Formulation or the prohlf!m
Consider the plane elastil: system shown in Fig. I. An elastic matrix. to which a uniaxial

tension (J ~e = (J is applied at infinity. contains a single fiber of radius R. The elastic constants
of the matrix and the fiber are denoted by (Ill' /( I) and (/12' /( el. respectively. where Jl, is the
shear modulus and /(, = 3 - ,h, (plane strain). and /(, = (3 - \',);( I + v,) (plane stressl is
Muskhelishvili's constant. v, being Poisson's ratio. i = I. 2. The corresponding thermal
expansion coefficients are 'XI and 'X:. respectively.

We consider a radial matrix crack in front of the fiber perpendil:ular to the external
stress field (J:'> This arrangement is one of the most dangerous situations possible and we
shall restrict ourselves to this case from now on.

In a series of papers Erdogan et al. (1973. 1974. 1975) have explained how to treat such
problems mathematically. They simulatc the crack by a continuous but unknown array of
edge dislol:ations f(f), which can be determined from the fact that the Hanks of a crack
must be free offorces. Since each dislocation leads to stresses along the flanks of the tictitious
crack. f(t) must be chosen sUl:h that the stresses from these contributions counterbalance the
external loads in the undamaged material.

The mathematical analysis of this problem leads to a singular integral equation f\lr the
unknown distribution ((fl, which. in general, must be solved numerically.

2.2. The illtc,t/ral {'(/lwtiol/
The integral equation of the above-mentioned problem reads:

f l>/(1) J'J, . rr(I+/(d
. .dt+ :k,C~.r)+k,(.\',t)}j(t)dt= - ") p(x),a ~ x ~ h.

" t -.\ " -Jll

(1)
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Fig. I. Geometry of an '-<:rack near a tibcr matrix interface.
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For a detailed derivation of this equation the reader is referred to Erdogan et al. (1974.
1975). Here we shall only summarize the results.

k, and krdenote the following integral kernels:

(2)

where the following contractions have been used:

II ~
III; -.

III

.:l and I' arc Dundurs' parameters (Dundurs. 1969), which have proven to be extremely
useful for the characterization of elastically mismatched composites. Note that k, may
hecorne singular if the "(("·tip of the crack ends at the fiber. whereas k, remains finite under
these conditions.

In order to provide a unique solution ofeqn (I) it is necessary to impose an additional
condition which, physically speaking. is the continuity of dispbcel11ents:

r f(t) lit = O. (4)

The right-hand side of (I) contains the distribution of forces alongside the crack tlanks
in the undamaged material. We obtain for uniaxial mechanical and therm.tl loading
(M lIskhclishvili, 1953; Mtiller et al., in preparation (a» :

(5)

where p is given by:

TR denotes the fabrication temperature of the composite. Note that p is a measure of the
relative strength of the thermal stresses when compared to the external mechanical loads.
Negative values of p correspond to a composite in which the thermal expansion coefficient
of the fiber is greater than that of the matrix. Consequently. negative values ofpcharacterize
compressive tangential stresses on the surface of the r-crack and vice versa.

2.3. Stress illtensity factors
In order to calculate stress intensity factors, /(t) is separated into a singular and into

a non-singular part. the latter of which is called F(t) :
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I(t) = F(t)(h-tl I 2(t-a) -12.

Note that a separation like this holds only for the case ofcracks which do not terminate at
the interface. The equations for a terminating crack have been discussed by Muller et al.
(In preparation (b».

Consequently, with the definitions (Erdogan and Gupta. 1975):

(8)

the following expressions can be derived for the SIFs of r-cracks which do not terminate
at the interface:

2.4. Numerical solution (It lI/e illtegral e([lIation
We introduce the following dimensionless central crack coordinates (.i, T) :

(9)

where

x = Ii+ L. 1 :=: If+ L, ( 10)

.\ = x-L,

Wilh Ihe definilions:

[= 1- L,
b+a

L =---1---'
h-a

1=---
2

(II)

(.i, l) = Ik.U, fl,

_( ~) _ p(.i:)
p.\ - L .

k, (.\:, n = Ik, (.\, n,

1I'(l)=(I-l) 12([+1) 12 ( 12)

if (1 ;6 0,

L= plane strain },

plane stress

if (1 = 0,

the following dimensionless integral equation is obtained:
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f
... 1 h(l)w(l) f'" 1

--_- dl+ {fA.i.!) +f, C\'.l) }h(l)u:(l) dl = - rcp(.i).
-I l-x -I
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t+1
1

h(!)w(f)dl= O.

(13)

Following the Gauss-Jacobi integration technique of Erdogan el al. (1973) this equation
can be mapped onto a system of linear equations for the unknown function h(/) which is
evaluated at the zeros of Chebyshev polynomials:

.".

L h(lk) Wk =O.
k=1

j= I. .... N-I •

(14)

k = I, ...• N.

j= 1....• N-1.

( 15)

( 16)

Thus for an r-crack which docs not terminate at the interface. the SIFs of eqn (9) can be
approximated by:

(17)

Note that as in the paper by Lu et al. (1990) the results are normalized with respect to the
particle radius R and not with respect to the crack length I. This method of normalization
has proven to be especially effective since the particle size is normally kept constant.

2.5. Results and discussion
This section presents some numerical data for the SI Fs of r-cracks which do not

terminate at the interface and which arc either subject to purely thermal stresses (Section
2.5.1) or to a combination of thermal loading and uniaxial tension at infinity (Section 2.5.2).
For further loading combinations and an extensive discussion of the case of a crack
terminating at the interface. see the paper by Mtiller et al. (in preparation (b».

2.5.1. Thermal stresses. Figure 2a-c shows a systematic study of the influence of
Dundurs' parameters a and fJ on the SI Fs of an r-crack of length (R = I. As expected. the
stress intensity K(h) at the remote crack tip "h" decreases monotonically as a function of
increasing distance dlR. K(h) increases slightly in magnitude for increasing Dundurs'
parameters. However, the stress intensities K(a) at crack tip "a" show a behavior which
is less uniform. For distances ellR where the a-tip comes very close to the fiber
(0.00 I < dlR < 0.1) the normalized SIFs increase for positive a-values with increasing dlR.
while they decrease for negative ex. The curves for positive C( show a maximum around
dlR = 0.1. Beyond dl R = 0.1 allcurves decrease monotonically, their slopes being a function
of C( and p. Increasing p-values lead to a slight increase of the maximum.

2.5.2. Comhined thermal and uniaxial mechanical loading. A systematic study of crack
shielding due to thermal stresses is shown in the sequence of Fig. 3 for different values of
Dundurs' parameters. Depending upon the compressive (p < 0) or tensile nature (p > 0)
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Fig. 2. Normalized thermal 51 Fs for remote r-cracks (Ij R = I) at various distances d.' R from the
interface and for different Dundurs' parameters.
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Fig. 3. Normalizcd SIFs for r-cracks under combined loading at various distances eli R (Ii R = I).
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of the thermal stresses. the SIFs either decrease or increase when compared to the case of
vanishing thermal mismatch (p = 0).

3. e.-\LCl'L\TIO~ OF STRESS I:"TE:"SITY FACTORS OF :-I-CRACKS

3.1. Description (~( the prohlem
Consider the plane elastic system shown in Fig. -k An elastic matrix. to which biaxial

tensions ,VI. S: are applied at infinity. contains a single. circular fiber of radius R. The
angle of inclination between ,VI and the real x-axis is called 6. Along the interface between
the fiber and the matrix a circular-arc-shaped crack is oriented such that it subtends an
angle of 2; symmetrically with respect to the positive x-axis. Furthermore. the crack is
subject to an internal pressure p.

3.2. The hOllndary conditioJlS
The followed first set of boundary conditions holds along the cracked part L, and the

bonded part L p of the interl~lCe. respectively:

on L,.

( 18)

11;,. 11;". i = I. 2 an: the stress components in polar coordinates of the matrix region I and
the region covered hy the circular inclusion 2. respectivdy. II; and II!I. i = t. 2, denote the
corresponding displacements~

iy

N,/""

/'
, /""
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x

Fig. 4. A pressurized cr;l\:k at the interface hetween an clastlcally and thermally mismatched matrix
.lI1d circular inclusion under the mfluence of exlern.11 stresses.
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Furthermore. we demand that there is no rotation at infinity. that all stresses remain
finite as 1=1 -- 0 and that all stresses tend towards N 1 and N~ as 1=1 -- x. This forms the
second set of boundary conditions.

3.3. The Muskhelishrili-KolosOl' equations for thermal stress problems
Stresses and displacements in mechanically loaded. isothermal systems can be deter

mined from the following set ofgeneralized Muskhelishvili-Kolosov equations (Bogdanoff.
1954):

(19)

(20)

(2l)

fU:) and (1);(:). i = 1,2 are the well-known Goursat functions of two-dimensional elasticity
(cf. e.g. Muskhelishvili. 1953) with:

_ {( I + Vj )OI:i ,

Ct, =
01:"

plane strain,

plane stress.
(22)

3.4. Determination of the stress/imctiolls
A close inspection (cr. Miiller et al., in prcpufation (c); or England, 1966, for detuils)

of the first set of boundary conditions (18) shows that it is sul1icient to determine only two
complex functions 'f"(z) umI0(;), which in terms of the four functions n l (:), W'I(;)' n~(;)
and (t)'~(;) arc defined as follows:

where the following contractions were used:

:e I.

=e2, (23)

I-IJ
t] = --._-

1+IJ'
JlI(l-'1"~)\.' = - --_._--

1+'1 .
(24)

Furthermore, it can be shown (Muller et aI., in preparation (c); England, 1966) that these
two functions must satisfy the following functional equations on L,:

Note, that the indices" +.. and" - .. refer to the limit values of the corresponding functions
approaching L., from I and 2, respectively.

According to Muskhelishvili (1953) these equations have the following general
solution:



1916 W. H. :\1l:UER and S. SCHMAl'OER

8'( ,. I A 1 A: An- =)==A_,.= +"'+..1,1=+..1 0 + +.+"'+".- -- ...."- - -

where Xo(=) denotes the Plemelj function:

" == ') In 1/.
_IT

(27)

The remaining constants Am . .. An and B m'" B" arc determined from the second set of
boundary conditions mentioned in Section 3.1 for the points at infinity and at the origin.
An long and cumbersome calculation gives the following:

(I) if only thermal stresses and internal pressure are present:

8'(:) == A".

where the Ounuurs' material parameters x and (I were used again:

(2) if only stresses at intinity arc acting:

a.
8'(:) = al + ~;.

'_ UII + II ~I\ d (I - fJ) { _ ..' "..' •If' (-) = --':f'-"'-2-- h_I[_-R(cos"+_1 Sin",»

- :1~~[=(COS'-2"SinO-RJ}Xn(:).
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I l+x II+x., )[1 4 ') . '- (.,t)-- --(Nl+.v~) - - ---(NI-iV~ + i'- Sin-loCOS _U
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b 1= -------------
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RJ I +x , ,..: ',;
bz = -"2 \-.+-/1 (N 1 - ,'w z) e-" e-'.

a =~ N,+N~_ I-f] b 1.

I I_~ 4 2(1-x)"

R Z , .
a, = - --(Ni-N,)c·"'.

- 4 -
(29)

3.5. Determination (~l the slress i11fellsity faclors
Following Rkc (1988) thc SI Fs of a ,'J-crack can be defined as follows:

(30)

where r is a small radial distance at the interface in front of each crack lip. and (1" und (1,:1

denote the stresses directly at the interface. which in terms of the stress function ure given
by (Miiller ('1 al., in preparation (c»:

(31 )

Hence. we obtain with eqns (28) and (29) :

(I) for a pressurized :J-craek under the influence of residuul thermul stresses:

(32)

where I:'h characterizes the thermal mismatch:

(33)

(2) for u ,?-crack under the influence of stresses at infinity:

K(Re· i
') = K(Reii.

(34)

whcrc h _ I and h~ arc specified in cqns (29h.~.

By superposition of both rcsults the intcraction between thermal and mechanical loads
can now be studied, For a detailed discussion of special cases and the interaction see Muller
el al. (in preparation (c».
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4. CONCUJSIONS

Stresses and stress intensity factors have been calculated for ,- and 3-cracks in fiber
reinforced materials under thermal and mechanical loading. A numerical solution has been
obtained for the r-cracks on the basis of singular integral equations whereas in the case of
,')·cracks it was possible to obtain analytical results.
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